Exercise 61

Prove, without graphing, that the graph of the function has at least two x-intercepts in the specified interval.

$$
y=\sin x^{3}, \quad(1,2)
$$

Solution

The function $f(x)=\sin x^{3}$ is a composition of two functions, $g(x)=\sin x$ and $h(x)=x^{3}$, which are both continuous everywhere by Theorem 7. And by Theorem $9, f(x)$ is continuous everywhere. Evaluate the function at several values of x in the interval of interest.

$$
\begin{aligned}
f(1) & \approx 0.841 \\
f(1.2) & \approx 0.988 \\
f(1.4) & \approx 0.387 \\
f(1.6) & \approx-0.816 \\
f(1.8) & \approx-0.436 \\
f(2) & \approx 0.989
\end{aligned}
$$

$f(x)$ is continuous on the closed interval [1.4, 1.6], and $N=0$ lies between $f(1.4)$ and $f(1.6)$. By the Intermediate Value Theorem, then, there exists an x-intercept within $1.4<x<1.6$. Also, $f(x)$ is continuous on the closed interval [1.8,2], and $N=0$ lies between $f(1.8)$ and $f(2)$. By the Intermediate Value Theorem, then, there exists another x-intercept within $1.8<x<2$.
Therefore, there are at least two x-intercepts in the interval $(1,2)$-more can potentially be found by evaluating $f(x)$ at even more values of x.

